Improving fuzzy c-means clustering via quantum-enhanced weighted superposition attraction algorithm
نویسندگان
چکیده
منابع مشابه
Bilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملA New Feature Weighted Fuzzy C-means Clustering Algorithm
In the field of cluster analysis, most of existing algorithms assume that each feature of the samples plays a uniform contribution for cluster analysis. Considering different features with different importance, feature-weight assignment can be regarded as a special case of feature selection. That is, the feature assigned a value in the interval [0, 1] indicating the importance of that feature, ...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some kinds...
متن کاملAn enhanced ontology based Weighted Fuzzy Local Information C-Means Algorithm for clustering
This paper presents a variation of fuzzy c-means (FCM) algorithm that provides data clustering. The proposed algorithm incorporates the local spatial information in a novel fuzzy way. The new algorithm is called Weighted Fuzzy Local Information C-Means (WFLICM). WFLICM can overcome the disadvantages of the known fuzzy Cmeans algorithm and at the same time enhances the clustering performance. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics
سال: 2019
ISSN: 1303-5010
DOI: 10.15672/hjms.2019.657